Loglogistic distribution with shape parameter \(\tau\) and scale parameter \(\lambda\).
dLlogis(x, shape, rate = 1/scale, scale = 1/rate)
pLlogis(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE)
expValLlogis(shape, rate = 1/scale, scale = 1/rate)
varLlogis(shape, rate = 1/scale, scale = 1/rate)
kthMomentLlogis(k, shape, rate = 1/scale, scale = 1/rate)
expValLimLlogis(d, shape, rate = 1/scale, scale = 1/rate)
expValTruncLlogis(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE)
stopLossLlogis(d, shape, rate = 1/scale, scale = 1/rate)
meanExcessLlogis(d, shape, rate = 1/scale, scale = 1/rate)
VatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate)
TVatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate)vector of quantiles.
shape parameter \(\tau\), must be positive
rate parameter \(\beta\), must be positive.
alternative parameterization to the rate parameter, scale = 1 / rate.
logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise, \(P[X > x]\).
kth-moment.
cut-off value.
logical; if TRUE (default) truncated mean for values <= d, otherwise, for values > d.
probability.
Function :
dLlogis gives the probability density function (PDF).
pLlogis gives the cumulative density function (CDF).
expValLlogis gives the expected value.
varLlogis gives the variance.
kthMomentLlogis gives the kth moment.
expValLimLlogis gives the limited mean.
expValTruncLlogis gives the truncated mean.
stopLossLlogis gives the stop-loss.
meanExcessLlogis gives the mean excess loss.
VatRLlogis gives the Value-at-Risk.
TVatRLlogis gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
The loglogistic distribution with shape parameter \(\tau\) and scale parameter \(\lambda\) has density: $$\frac{\tau \lambda^\tau x^{\tau -1}}{(\lambda^{\tau }+x^{\tau })^{2}}$$ for \(x \in \mathcal{R}^+\), \(\lambda, \tau > 0\).
dLlogis(x = 2, shape = 2, scale = 4)
#> [1] 0.01514793
# With scale parameter
pLlogis(q = 3, shape = 3, scale = 5)
#> [1] 0.9997038
# With rate parameter
pLlogis(q = 3, shape = 3, rate = 0.2)
#> [1] 0.9997038
# Survival function
pLlogis(q = 3, shape = 3, rate = 0.2, lower.tail = FALSE)
#> [1] 0.0002962085
expValLlogis(shape = 2, scale = 4)
#> [1] 6.283185
varLlogis(shape = 3, scale = 4)
#> [1] 15.29977
kthMomentLlogis(k = 3, shape = 5, scale = 4)
#> [1] 126.8454
expValLimLlogis(d = 2, shape = 2, scale = 4)
#> [1] 1.85459
# With rate parameter
expValTruncLlogis(d = 2, shape = 2, scale = 4)
#> [1] 0.2545904
# Values greater than d
expValTruncLlogis(d = 2, shape = 2, scale = 4, less.than.d = FALSE)
#> [1] 6.028595
stopLossLlogis(d = 2, shape = 2, scale = 4)
#> [1] 4.428595
meanExcessLlogis(d = 3, shape = 2, scale = 4)
#> [1] 5.795595
# With scale parameter
VatRLlogis(kap = .2, shape = 2, scale = 4)
#> [1] 2
# With rate parameter
VatRLlogis(kap = .2, shape = 2, rate = 0.25)
#> [1] 2
# With scale parameter
TVatRLlogis(kap = .2, shape = 3, scale = 4)
#> [1] 5.588911
# With rate parameter
TVatRLlogis(kap = .2, shape = 3, rate = 0.25)
#> [1] 5.588911