Weibull distribution with shape parameter \(\tau\) and rate parameter \(\beta\).
expValWeibull(shape, rate = 1/scale, scale = 1/rate)
varWeibull(shape, rate = 1/scale, scale = 1/rate)
kthMomentWeibull(k, shape, rate = 1/scale, scale = 1/rate)
expValLimWeibull(d, shape, rate = 1/scale, scale = 1/rate)
expValTruncWeibull(
d,
shape,
rate = 1/scale,
scale = 1/rate,
less.than.d = TRUE
)
stopLossWeibull(d, shape, rate = 1/scale, scale = 1/rate)
meanExcessWeibull(d, shape, rate = 1/scale, scale = 1/rate)
VatRWeibull(kap, shape, rate = 1/scale, scale = 1/rate)
TVatRWeibull(kap, shape, rate = 1/scale, scale = 1/rate)
shape parameter \(\tau\), must be positive
rate parameter \(\beta\), must be positive.
alternative parameterization to the rate parameter, scale = 1 / rate.
kth-moment.
cut-off value.
logical; if TRUE
(default) truncated mean for values <= d, otherwise, for values > d.
probability.
Function :
expValWeibull
gives the expected value.
varWeibull
gives the variance.
kthMomentWeibull
gives the kth moment.
expValLimWeibull
gives the limited mean.
expValTruncWeibull
gives the truncated mean.
stopLossWeibull
gives the stop-loss.
meanExcessWeibull
gives the mean excess loss.
VatRWeibull
gives the Value-at-Risk.
TVatRWeibull
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
The Weibull distribution with shape parameter \(\tau\) and rate parameter \(\beta\) has density: $$f\left(x\right) = \beta \tau \left( \beta x \right) ^{\tau -1} % \mathrm{e}^{-\left( \beta x\right) ^{\tau }}$$ for \(x \in \mathcal{R}^+\), \(\beta > 0\), \(\tau > 0\)
# With scale parameter
expValWeibull(shape = 2, scale = 5)
#> [1] 4.431135
# With rate parameter
expValWeibull(shape = 2, rate = 0.2)
#> [1] 4.431135
# With scale parameter
varWeibull(shape = 2, scale = 5)
#> [1] 5.365046
# With rate parameter
varWeibull(shape = 2, rate = 0.2)
#> [1] 5.365046
# With scale parameter
kthMomentWeibull(k = 2, shape = 2, scale = 5)
#> [1] 25
# With rate parameter
kthMomentWeibull(k = 2, shape = 2, rate = 0.2)
#> [1] 25
# With scale parameter
expValLimWeibull(d = 2, shape = 2, scale = 5)
#> [1] 6.135422
# With rate parameter
expValLimWeibull(d = 2, shape = 2, rate = 0.2)
#> [1] 6.135422
# With scale parameter
expValTruncWeibull(d = 2, shape = 2, scale = 5)
#> [1] 4.431135
# With rate parameter
expValTruncWeibull(d = 2, shape = 2, rate = 0.2)
#> [1] 4.431135
# Mean of values greater than d
expValTruncWeibull(d = 2, shape = 2, rate = 0.2, less.than.d = FALSE)
#> [1] 1.869292e-42
# With scale parameter
stopLossWeibull(d = 2, shape = 3, scale = 4)
#> [1] -1.764994
# With rate parameter
stopLossWeibull(d = 2, shape = 3, rate = 0.25)
#> [1] -1.764994
# With scale parameter
meanExcessWeibull(d = 2, shape = 3, scale = 4)
#> [1] -2
# With rate parameter
meanExcessWeibull(d = 2, shape = 3, rate = 0.25)
#> [1] -2
# With scale parameter
VatRWeibull(kap = .2, shape = 3, scale = 4)
#> [1] 2.426171
# With rate parameter
VatRWeibull(kap = .2, shape = 3, rate = 0.25)
#> [1] 2.426171
# With scale parameter
TVatRWeibull(kap = .2, shape = 3, scale = 4)
#> [1] 4.017289
# With rate parameter
TVatRWeibull(kap = .2, shape = 3, rate = 0.25)
#> [1] 4.017289