Poisson distribution with rate parameter \(\lambda\).
expValPois(lambda)
varPois(lambda)
expValTruncPois(d, lambda, k0, less.than.d = TRUE)
TVatRPois(kap, lambda, k0)
mgfPois(t, lambda)
pgfPois(t, lambda)Rate parameter \(\lambda\).
cut-off value.
point up to which to sum the distribution for the approximation.
logical; if TRUE (default) truncated mean for values <= d, otherwise, for values > d.
probability.
t.
Function :
expValPois  gives the expected value.
varPois  gives the variance.
expValTruncPois  gives the truncated mean.
TVatRPois  gives the Tail Value-at-Risk.
mgfPois  gives the moment generating function (MGF).
pgfPois  gives the probability generating function (PGF).
Invalid parameter values will return an error detailing which parameter is problematic.
The Poisson distribution with rate parameter \(\lambda\) has probability mass function : $$Pr(X = k) = \frac{\lambda^k \textrm{e}^{-\lambda}}{k!}$$ for \(k = 0, 1, 2, \dots\), and \(\lambda > 0\)
expValPois(lambda = 3)
#> [1] 3
varPois(lambda = 3)
#> [1] 3
expValTruncPois(d = 0, lambda = 2, k0 = 2E2, less.than.d = FALSE)
#> This is an approximation
#> [1] 2
expValTruncPois(d = 2, lambda = 2, k0 = 2E2, less.than.d = TRUE)
#> This is an approximation
#> [1] 0.8120117
TVatRPois(kap = 0.8, lambda = 3, k0 = 2E2)
#> This is an approximation
#> [1] 5.596787
mgfPois(t = 1, lambda = 3)
#> [1] 173.269
pgfPois(t = 1, lambda = 3)
#> [1] 1