Normal distribution
expValNorm(mean, sd)
varNorm(mean, sd)
expValLimNorm(d, mean = 0, sd = 1)
expValTruncNorm(d, mean = 0, sd = 1, less.than.d = TRUE)
stopLossNorm(d, mean = 0, sd = 1)
meanExcessNorm(d, mean = 0, sd = 1)
VatRNorm(kap, mean = 0, sd = 1)
TVatRNorm(kap, mean = 0, sd = 1)
mgfNorm(t, mean = 0, sd = 1)
mean (location) parameter \(\mu\).
standard deviation \(\sigma\), must be positive.
cut-off value.
logical; if TRUE
(default) truncated mean for values <= d, otherwise, for values > d.
probability.
t.
Function :
expValNorm
gives the expected value.
varNorm
gives the variance.
expValLimNorm
gives the limited mean.
expValTruncNorm
gives the truncated mean.
stopLossNorm
gives the stop-loss.
meanExcessNorm
gives the mean excess loss.
VatRNorm
gives the Value-at-Risk.
TVatRNorm
gives the Tail Value-at-Risk.
mgfNorm
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
The Normal distribution with mean \(\mu\) and standard deviation \(\sigma\) has density: $$\frac{1}{\sqrt{2\pi}\sigma}\textrm{e}^{-\frac{1}{2}\left(\frac{x - \mu}{\sigma}\right)^2}$$ for \(x \in \mathcal{R}\), \(\mu \in \mathcal{R}, \sigma > 0\).
Function VatRNorm is a wrapper of the qnorm
function from the stats package.
expValNorm(mean = 3, sd = 5)
#> [1] 3
varNorm(mean = 3, sd = 5)
#> [1] 25
expValLimNorm(d = 2, mean = 2, sd = 5)
#> [1] 0.005288598
expValTruncNorm(d = 2, mean = 2, sd = 5)
#> [1] -0.9947114
stopLossNorm(d = 2, mean = 2, sd = 5)
#> [1] 0.005288598
meanExcessNorm(d = 2, mean = 2, sd = 5)
#> [1] 0.0105772
VatRNorm(kap = 0.8, mean = 3, sd = 5)
#> [1] 7.208106
TVatRNorm(kap = 0.8, mean = 2, sd = 5)
#> [1] 8.999048
mgfNorm(t = 1, mean = 3, sd = 5)
#> [1] 5389698