Gamma distribution with shape parameter \(\alpha\) and rate parameter \(\beta\).
expValGamma(shape, rate = 1/scale, scale = 1/rate)
varGamma(shape, rate = 1/scale, scale = 1/rate)
kthMomentGamma(k, shape, rate = 1/scale, scale = 1/rate)
expValLimGamma(d, shape, rate = 1/scale, scale = 1/rate)
expValTruncGamma(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE)
stopLossGamma(d, shape, rate = 1/scale, scale = 1/rate)
meanExcessGamma(d, shape, rate = 1/scale, scale = 1/rate)
VatRGamma(kap, shape, rate = 1/scale, scale = 1/rate)
TVatRGamma(kap, shape, rate = 1/scale, scale = 1/rate)
mgfGamma(t, shape, rate = 1/scale, scale = 1/rate)
shape parameter \(\alpha\), must be positive.
rate parameter \(\beta\), must be positive.
alternative parameterization to the rate parameter, scale = 1 / rate.
kth-moment.
cut-off value.
logical; if TRUE
(default) truncated mean for values <= d, otherwise, for values > d.
probability.
t.
Function :
expValGamma
gives the expected value.
varGamma
gives the variance.
kthMomentGamma
gives the kth moment.
expValLimGamma
gives the limited mean.
expValTruncGamma
gives the truncated mean.
stopLossGamma
gives the stop-loss.
meanExcessGamma
gives the mean excess loss.
VatRGamma
gives the Value-at-Risk.
TVatRGamma
gives the Tail Value-at-Risk.
mgfGamma
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
The Gamma distribution with shape parameter \(\alpha\) and rate parameter \(\beta\) has density: $$f\left(x\right) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1}% \textrm{e}^{-\beta x}$$ for \(x \in \mathcal{R}^+\), \(\beta, \alpha > 0\).
Function VatRGamma is a wrapper for the qgamma
function stats package.
# With scale parameter
expValGamma(shape = 3, scale = 4)
#> [1] 12
# With rate parameter
expValGamma(shape = 3, rate = 0.25)
#> [1] 12
# With scale parameter
varGamma(shape = 3, scale = 4)
#> [1] 48
# With rate parameter
varGamma(shape = 3, rate = 0.25)
#> [1] 48
# With scale parameter
kthMomentGamma(k = 2, shape = 3, scale = 4)
#> [1] 192
# With rate parameter
kthMomentGamma(k = 2, shape = 3, rate = 0.25)
#> [1] 192
# With scale parameter
expValLimGamma(d = 2, shape = 3, scale = 4)
#> [1] 1.992244
# With rate parameter
expValLimGamma(d = 2, shape = 3, rate = 0.25)
#> [1] 1.992244
# With scale parameter
expValTruncGamma(d = 2, shape = 3, scale = 4)
#> [1] 0.02101947
# With rate parameter
expValTruncGamma(d = 2, shape = 3, rate = 0.25)
#> [1] 0.02101947
# values greather than d
expValTruncGamma(d = 2, shape = 3, rate = 0.25, less.than.d = FALSE)
#> [1] 11.97898
# With scale parameter
stopLossGamma(d = 2, shape = 3, scale = 4)
#> [1] 10.00776
# With rate parameter
stopLossGamma(d = 2, shape = 3, rate = 0.25)
#> [1] 10.00776
# With scale parameter
meanExcessGamma(d = 2, shape = 3, scale = 4)
#> [1] 74565.87
# With rate parameter
meanExcessGamma(d = 2, shape = 3, rate = 0.25)
#> [1] 74565.87
# With scale parameter
VatRGamma(kap = .2, shape = 3, scale = 4)
#> [1] 6.140177
# With rate parameter
VatRGamma(kap = .2, shape = 3, rate = 0.25)
#> [1] 6.140177
# With scale parameter
TVatRGamma(kap = .2, shape = 3, scale = 4)
#> [1] 13.94824
# With rate parameter
TVatRGamma(kap = .2, shape = 3, rate = 0.25)
#> [1] 13.94824
mgfGamma(t = 1, shape = 3, rate = 5)
#> [1] 1.953125